A Numerical Study on a Preconditioned GMRES Solver with Algebraic Multigrid Accelerations for the Fluid-Structure Interaction Problems on Hybrid Meshes
نویسندگان
چکیده
In this work, we propose a preconditioned GMRES solver for a Schur complement equation of the linearized fluid-structure interaction problem, with respect to the displacement unknowns only on the interface. The preconditioning for the Schur complement equation requires approximate solutions of the fluid and structure sub-problems with appropriate boundary conditions on the interface, in particular, a Robin condition for the fluid problem and a Neumann condition for the structure problem. Both sub-problems are spatially discretized by a finite element method on hybrid meshes and temporally discretized by implicit first-order methods. The discretized equations of both sub-problems are solved by special algebraic multigrid methods. The performance of this preconditioned GMRES solver is compared with that of a Newton based fluid-structure interaction solver. The convergence dependence on different parameters is studied by numerical experiments.
منابع مشابه
A Class of Fluid-structure Interaction Solvers with a Nearly Incompressible Elasticity Model
In this paper, we present some numerical studies on two partitioned fluid-structure interaction solvers: a preconditioned GMRES solver and a Newton based solver, for the fluid-structure interaction problems employing a nearly incompressible elasticity model in a classical mixed displacementpressure formulation. Both are highly relying on robust and efficient solvers for the fluid and structure ...
متن کاملDomain Decomposition Solvers for the Fluid-Structure Interaction Problems with Anisotropic Elasticity Models Powered by TCPDF (www.tcpdf.org) DOMAIN DECOMPOSITION SOLVERS FOR THE FLUID-STRUCTURE INTERACTION PROBLEMS WITH ANISOTROPIC ELASTICITY MODELS
In this work, a two-layer coupled fluid-structure-structure interaction model is considered, which incorporates an anisotropic structure model into the fluid-structure interaction problems. We propose two domain decomposition solvers for such a class of coupled problems: a Robin-Robin preconditioned GMRES solver combined with an inner Dirichlet-Neumann iterative solver, and a Robin-Robin precon...
متن کاملDomain Decomposition Solvers for the Fluid-Structure Interaction Problems with Anisotropic Elasticity Models
In this work, a two-layer coupled fluid-structure-structure interaction model is considered, which incorporates an anisotropic structure model into the fluid-structure interaction problems. We propose two domain decomposition solvers for such a class of coupled problems: a Robin-Robin preconditioned GMRES solver combined with an inner Dirichlet-Neumann iterative solver, and a Robin-Robin precon...
متن کاملA Monolithic Geometric Multigrid Solver for Fluid-Structure Interactions in ALE formulation
We present a monolithic geometric multigrid solver for fluid-structure interaction problems in Arbitrary Lagrangian Eulerian coordinates. The coupled dynamics of an incompressible fluid with nonlinear hyperelastic solids gives rise to very large and ill conditioned systems of algebraic equations. Direct solvers usually are out of question due to memory limitations, standard coupled iterative so...
متن کاملA Comparison of Geometric and Algebraic Multigrid for Discrete Convection-diffusion Equations
The discrete convection-diffusion equations obtained from streamline diffusion finite element discretization are solved on both uniform meshes and adaptive meshes. The performance of geometric multigrid method (GMG) and algebraic multigrid method (AMG), both as a solver and as a preconditioner of the generalized minimal residual method (GMRES), are evaluated. Our numerical results show that GMR...
متن کامل